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Abstract: With more and more biological information generated, the 
most pressing task of bioinformatics has become to analyze and 
interpret various types of data, including nucleotide and amino acid 
sequences, protein structures, gene expression profiling and so on. We 
apply the data mining techniques of feature generation, feature 
selection, and feature integration with learning algorithms to tackle 
the problems of disease phenotype classification and patient survival 
prediction from gene expression profiles, and the problems of 
functional site prediction from DNA sequences. When dealing with 
problems arising from gene expression profiles, we propose a new 
feature selection process for identifying genes associated with disease 
phenotype classification or patient survival prediction. This method, 
GSA and GFA algorithms aims to select a set of sharply 
discriminating genes with little redundancy by combining entropy 
measure, Wilcoxon rank sum test and Pearson correlation coefficient 
test. In the study of patient survival prediction, we present a new idea 
of selecting informative training samples by defining long-term and 
short-term survivors. GFA is then applied to identify genes from these 
samples. A regression function built on the selected samples and genes 
by a linear kernel SVM is worked out to assign a risk score to each 
patient. In order to apply data mining methodology to identify 
functional sites in biological sequences, we first generate candidate 
features using k k-gram nucleotide acid or amino acid patterns and 
then transform original sequences respect to the new constructed 
feature space. 

Keywords : Gene Selection Algorithm, Gene Filter Algorithm, Patient 
survival prediction Algorithm, Gene expression profile. 

1. INTRODUCTION

The past few decades witness an explosive growth 
in biological information generated by the scientific 
community. This is caused by major advances in the field 
of molecular biology, coupled with advances in genomic 
technologies. In turn, the huge amount of genomic data 
generated not only leads to a demand on the computer 
science community to help store, organize and index the 
data, but also leads to a demand for specialized tools to 
view and analyze the data. 

At the beginning, the main role of bioinformatics 
was to create and maintain databases to store biological 
information, such as nucleotide and amino acid sequences. 
With more and more data generated, nowadays, the most 
pressing task of bioinformatics has moved to analyze and 
interpret various types of data, including nucleotide and 
amino acid sequences, protein domains, protein structures 
and so on. To meet the new requirements arising from the 
new tasks, researchers in the field of bioinformatics are 
working on the development of new algorithms 
(mathematical formulas, statistical methods and etc) and 
software tools which are designed for assessing 
relationships among large data sets stored, such as methods 
to locate a gene within a sequence, predict protein structure 
and/or function, understand diseases at gene expression 

level and etc. Motivated by the fast development of 
bioinformatics, this thesis is designed to apply data mining 
technologies to some biological data so that the relevant 
biological problems can be solved by computer programs. 
The aim of data mining is to automatically or semi-
automatically discover hidden knowledge, unexpected 
patterns and new rules from data. There are a variety of 
technologies involved in the process of data mining, such 
as statistical analysis, modeling techniques and database 
technology. During the last ten years, data mining is 
undergoing very fast development both on techniques and 
applications. Its typical applications include market 
segmentation, customer profiling, fraud detection, 
(electricity) loading forecasting, and credit risk analysis and 
so on. In the current post-genome age, understanding floods 
of data in molecular biology brings great opportunities and 
big challenges to data mining researchers. 

2. RELATED WORK

A Literature Review contains a critical analysis 
and the integration of information from a number of 
sources, as well as a consideration of any gaps in the 
literature and possibilities for future research. Feng Chu et 
al. [1] described their research in “Applications of Support 
Vector Machines to Cancer Classification with microarray 
data”. Microarrays also known as gene chips or DNA chips 
provide a convenient way of obtaining gene expression 
levels for a large number of genes simultaneously. Each 
spot on a microarray chip contains the clone of a gene from 
a tissue sample. Some mRNA samples are labelled with 
two different kinds of dyes, for example, Cy5 (red) and 
Cy3 (blue). After mRNA interact with the genes, i.e., 
hybridization, the color of each spot on the chip will 
change. The resulted image reflects the characteristics of 
the tissue at the molecular level. Microarrays can thus be 
used to help classify and predict different types of cancers. 
Traditional methods for diagnosis of cancers are mainly 
based on the morphological appearances of the cancers; 
however, sometimes it is extremely difficult to find clear 
distinctions between some types of cancers according to 
their appearances. Hence the microarray technology stands 
to provide a more quantitative means for cancer diagnosis. 
For example, gene expression data have been used to obtain 
good results in the classifications of lymphoma [2], 
leukemia [3], breast cancer [4] and liver cancer [5].  

It is challenging to use gene expression data for 
cancer classification because of the following two special 
aspects of gene expression data. First, gene expression data 
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are usually very high dimensional. The dimensionality 
ranges from several thousands to over ten thousands. 
Second, gene expression data sets usually contain relatively 
small numbers of samples, e.g., a few tens. If we treat this 
pattern recognition problem with supervised machine 
learning approaches, we need to deal with the shortage of 
training samples and high dimensional input features. 
Recent approaches to solve this problem include artificial 
neural networks [7], an evolutionary algorithm [6], nearest 
shrunken centroids [6], and a graphical method [8]. In this 
paper, we applies a powerful classifier, i.e., the support 
vector machine (SVM), and four effective feature reduction 
methods, i.e., principal components analysis (PCA), class-
separability measure, Fisher ratio, and t-test, to the problem 
of cancer classification based on gene expression data.  

Brown et.al [9] introduced a new method of 
functionally classifying genes using gene expression data 
from DNA microarray hybridization experiments. The 
method is based on the theory of support vector machines 
(SVMs). Brown et.al described SVMs that use different 
similarity metrics including a simple dot product of gene 
expression vectors, polynomial versions of the dot product, 
and a radial basis function. Compared to the other SVM 
similarity metrics, the radial basis function SVM appears to 
provide superior performance in identifying sets of genes 
with a common function using expression data. In addition, 
SVM performance is compared to four standard machine 
learning algorithms. SVMs have many features that make 
them attractive for gene expression analysis, including their 
flexibility in choosing a similarity function, sparseness of 
solution when dealing with large data sets, the ability to 
handle large feature spaces, and the ability to identify 
outliers.  

 
3.  FEATURE SELECTION TECHNIQUE 

Feature selection techniques can be categorized 
according to a number of criteria. One popular 
categorization is based on whether the target classification 
algorithm will be used during the process of feature 
evaluation. A feature selection method, that makes an 
independent assessment only based on general 
characteristics of the data, is named “filter”  while, on the 
other hand, if a method evaluates features based on 
accuracy estimates provided by certain learning algorithm 
which will ultimately be employed for classification, it will 
be named as “wrapper”. With wrapper methods, the 
performance of a feature subset is measured in terms of the 
learning algorithm’s classification performance using just 
those features. The classification performance is estimated 
using the normal procedure of cross validation, or the 
bootstrap estimator. Thus, the entire feature selection 
process is rather computation-intensive. For example, if 
each evaluation involves a 10-fold cross validation, the 
classification procedure will be executed 10 times. For this 
reason, wrappers do not scale well to data sets containing 
many features. Besides, wrappers have to be re-run when 
switching from one classification algorithm to another. In 
contrast to wrapper methods, filters operate independently 
of any learning algorithm and the features selected can be 
applied to any learning algorithm at the classification stage. 

Filters have been proven to be much faster than wrappers 
and hence, can be applied to data sets with many features. 
Since the biological data sets often contain a huge number 
of features (e.g. gene expression profiles), we concentrate 
on filter methods. Another taxonomy of feature selection 
techniques is to separate algorithms evaluating the worth or 
merit of a subset features from those of individual features. 
Correlation-based feature selection is a method that 
assesses and selects a subset of features. Gene Filter 
Algorithm (GFA) which first evaluates features 
individually and then forms the final representative feature 
set by considering the correlations between the features. 

 
4. GENE FILTER (GFA) AND GENE SELECTION (GSA) 

ALGORITHMS 
  Gene Filter Algorithm GFA is a new strategy to 

conduct feature selection, mainly aiming to find significant 
genes in supervised learning from gene expression data. In 
this algorithm, we combine the above presented methods of 
entropy measure and Wilcoxon rank sum test, as well as 
Pearson correlation coefficient test together to form a three-
phase feature selection process. In phase I, we apply 
Fayyad’s entropy-based discretization algorithm described 
in to all the numeric features. We will discard a feature, if 
the algorithm cannot find a suitable cut point to split the 
feature’s value range. One point needs to be emphasized 
here is that we will use numeric features all the way, 
though a discretization algorithm is involved to filter out 
some features in this phase.  

In phase II, we conduct Wilcoxon rank sum test 
only on features output from phase I. For a feature f, the 
test statistical measure can be calculated by the way.  If 
w(f) falls outside the interval [clower, cupper] where 
clower and cupper are the lower and upper critical test 
values. We will reject the null hypothesis and this indicates 
that the values of feature fare significantly different 
between samples in different classes. In the calculation of 
the two critical values clower and cupper, the standard 5% 
or 1% significant level is generally used. Therefore, by this 
phase, we is left with two groups of features: one group 
contains features f1 such that w(f1) < clower, the other 
group contains features f2 such that w(f2) > cupper. 
Features in same group are supposed to have similar 
behavior - having relatively larger values in one class of 
samples and relatively smaller values in another class of 
samples. In a gene expression data analysis, it is of a great 
interest to find which genes are highly expressed in a 
special type of samples (such as tumor samples, or patients 
with certain disease). 

 
Step-1: k=1 
Step-2: Rank all feature in group F on class entropy in an 
ascending order,  f1,f2,….f1. 
Step-3: Let Sk={f1} and remove f1 from F. 
Step-4: For each fi(i > 1) 

Calculate Pearson correlation coefficient r(f1,fi); 
If r(f1, fi ) > rc 
Add fi into Sk and remove it from F; 

Step-5: k=k+1 and goto step 2 until F=Φ. 
Figure-1: Gene Filter Algorithm (GFA) 
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In phase III, for each group of features, we 
examine correlations of features within the group. For those 
features that are in the same group and are highly 
correlated, we select only some representatives of them to 
form the final feature set. In gene expression study, high 
correlation between two genes can be a hint that the two 
genes belong to the same pathway, are co-expressed or are 
coming from the same chromosome. “In general, we expect 
high correlation to have a meaningful biological 
explanation. If, e.g. genes A and B are in the same 
pathway, it could be that they have similar regulation and 
therefore similar expression profiles”. We proposes to use 
more uncorrelated genes for classification since if we has 
lots of genes from one pathway, the classification result 
might be skewed. 

 
Step-1: Select a statistic which will be used to measure 

differences between classes. 
Step-2: Determine the threshold of the statistic according to 

significant level α. 
Step-3: Calculate the test statistic for each of total features 
Step-4: Get the number of features selected by the 

threshold record as w. 
Step-5: For ith  permutation test iteration 

(i=1,2…….,t):generate a pseudo data set by 
randomly permuting the class labels of all the 
samples, calculate the same test statistic for every 
feature, record how many features are selected by 
the threshold ,denote it as ki. 

Step-6: Compute the percentage of features selected during 
the permutation test, 

            p= 

1

t

ii
k

t m





  
calculate p×w to be the expected number of false positive 

Figure-2: Gene Selection Algorithm (GSA) 
 
Using GSA, in gene expression data analyses 

where there are often more than thousands of features, we 
expect to identify of a subset of sharply discriminating 
features with little redundancy. The entropy measure is 
effective for identifying discriminating features. After 
narrowing down by the Wilcoxon rank some test, the 
remaining features become sharply discriminating. Then, 
with the correlation examination, some highly correlated 
features are removed to reduce redundancy. We does not 
use CFS in Phase III of GSA, because CFS sometimes 
returns too few features to comprehensively understand the 
data set. For example, CFS selects only one feature if the 
class entropy of this feature is zero. However, Pearson 
correlation coefficient also has a shortcoming - the 
calculation of correlation is dependent on the real values of 
features - it is sensitive to some data transformation 
operations. Therefore, other algorithms are being 
implemented to group correlated features. 

 
 
 
 

5. PATIENT SURVIVAL PREDICTION ALGORITHM 
Step-1 :   Read n samples. 
Step-2 :   Select training samples. 
Step-3 :   If training samples long-term and short term  
                   then 
Step-4 :   Identify genes  
Step-5 :   Genes related to survival 
Step-6 :  Build SVM scoring function and form risk  
                  groups 
Step-7  :   Assign risk score and risk group to each  
                   sample 
Step- 8 :   Draw Kaplan–Meler   curves 

Figure-3 : Patient Survival Prediction Algorithm 
 

One of the main features of our new method is to 
select informative training samples. Since we focus is on 
the relationship between gene expression and survival, the 
survival time associated with each sample plays an 
important role here - two types of extreme cases, patients 
who died in a short period (termed as “short-term 
survivors”) and who were alive after a long period (termed 
as “long-term survivors”), should be more valuable than 
those in the “middle” status. Thus, We uses only a part of 
samples in training and this is clearly different from other 
approaches that use all training samples. 

Formally, for a sample T, if its follow-up time is 
F(T)and its status at the end of follow-up time is E(T), then  

 
    Short - term survivor, if F(T)<c1 Λ   

T is       Long - term survivor,  if F(T)>c2                                             
                  Others,   otherwise   

 
 
E(T)=1  stands for “dead” or an unfavorable 

outcome, E(T)=0 stands for “alive” or a favorable outcome, 
c1 and c2 are two thresholds of survival time for selecting 
short -term and long-term survivors. Note that long-term 
survivors also include those patients who died after the 
specified long period. The two thresholds, c1 and c2, can 
vary from disease to disease, from data set to data set. For 
example, in the survival study of early-stage lung 
adenocarcinomas that will be presented later, we choose 
short-term survivors as those who died within one follow-
up year (i.e.c1 is 1 year) and long-term survivors as those 
who were alive after five follow-up years (i.e. c2 is 5 years). 
There are total 31 extreme training samples (10 short-term 
survivors and 21 long-term survivors) among a total of 86 
available primary lung adenocarcinomas. These 21 long-
term survivors include 2 patients whose status at the end of 
follow-up time was “dead”, but follow-up times were 79.5 
months and 84.1 months, respectively. The basic guide 
lines for the selection of c1 and c2 are that the informative 
subset should (1) contain enough training samples for 
learning algorithms to learn (typically >15 samples in each 
class and total is between one third and one half of all 
available samples), but (2) not have too many samples to 
avoid including non-extreme cases. 
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After choosing informative training samples, we 
apply GFA and GSA algorithm to them to identify genes 
most associated with survival status. With the selected 
samples and genes, in the next step, we will build a scoring 
function to estimate the survival risk for every patient. 

Kaplan-Meier analysis estimates a population 
survival curve from a set of samples. A survival curve 
illustrates the fraction (or percentage) survival at each time. 
Since in realistic clinical trial it often takes several years to 
accumulate the patients for the trial, patients being 
followed for survival will have different starting times. 
Then the patients will have various length of follow-up 
time when the results are analyzed at one time. Therefore, 
the survival curve cannot be estimated simply by 
calculating the fraction surviving at each time. For 
example, in the following study of lung adenocarcinomas, 
the patient’s follow-up time is varying from 1.5 months to 
110.6 months.  A Kaplan-Meier analysis allows estimation 
of survival over time, even when patients drop out or are 
studied for different lengths of time. For example, an alive 
patient with 3 years follow-up time should contribute to the 
survival data for the first three years of the curve, but not to 
the part of the curve after that. Thus, this patient should be 
mathematically removed from the curve at the end of 3 
years follow-up time and this is called “censoring” the 
patient.  

 
Figure 4 (a): Samples of Kaplan-Meier survival curves. It 
is an example of a Kaplan-Meier survival curve. This group 
of patients has a minimum follow-up of a little over a year. 

 
Figure 4(b): It is an illustration on how to calculate the 
fraction of survival at a time. 

On a Kaplan-Meier survival curve, when a patient 
is censored, the curve does not take a step down as it does 
when a patient dies; instead, a tick mark is generally used 
to indicate where a patient is censored and each death case 
after that point will cause a little bit larger step down on the 
curve.  An alternative way to indicate a censored patient is 
to show the number of remaining cases “at risk” at several 
time points. Patients who have been censored or died 
before the time point are not counted as “at risk”. In Figure 
4 (a) shows a complete sample of Kaplan-Meier survival 
curve with a tick mark representing a censored patient 
(captured from http://www.cancerguide.org/scurve_km.html), 
while Figure 4 (b) illustrates how to calculate the fraction 
of survival at a time. 

To compare the survival characteristics between 
different risk groups for our survival prediction study, we 
draw Kaplan-Meier survival curves of the risk groups in 
one picture and use logrank test to compare the curves. The 
logrank test generates a p-value testing the null hypothesis 
that the survival curves are no difference between two 
groups. The meaning of p-value is that “if the null 
hypothesis is true, what is the probability of randomly 
selecting samples whose survival curves are different from 
those actually obtained”.  

 
6. SIMULATION RESULTS 

All biomedical data contain explicit signals or 
features as those in the classification problems raised by 
gene expression profiling. For example, DNA sequences 
and protein sequences represent the spectrum of biomedical 
data that possess no explicit features. Generally, a genomic 
sequence is just a string consisting of the letters “A”, “C”, 
“G”, and “T” in a “random order”. DNA process can be 
divided into two stages: transcription and translation. 

Transcription: In this stage, the information in 
DNA is passed on to RNA. This takes place when one 
strand of the DNA double helix is used as a template by the 
RNA polymerase to create a messenger RNA (mRNA). 
Then this mRNA moves from the nucleus to the cytoplasm. 
In fact, in the cell nucleus, the DNA with all the exons and 
introns of the gene is first transcribed into a complementary 
RNA copy named “nuclear RNA” (nRNA). This is 
indicated as “primary transcription” shown in Figure 6.1. 
Secondly, non-coding sequences of base pairs (introns) are 
eliminated from the coding sequences (exons) by RNA 
splicing. The resulting mRNA is the edited sequence of 
nRNA after splicing. The coding mRNA sequence can be 
described in terms of a unit of three nucleotides called a 
codon. 

Translation: In this stage, the information that 
has been passed to RNA from DNA is used to make 
proteins. At the initiation phase of translation, ribosome 
binds to the mRNA when it reaches an AUG (adenine, 
uracil, guanine) sequence on the RNA strand in a suitable 
context. The ribosome is made of protein and ribosomal 
RNA (rRNA). The start codon AUG is called translation 
initiation site (TIS) and is only recognized by the initiator 
tRNA (transfer RNA). After binding to the mRNA, the 
ribosome proceeds to the elongation phase of protein 
synthesis by sequentially binding to the appropriate codon 
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in mRNA to form base pairs with the anticodon of another 
tRNA molecule. Hence, with the ribosome moving from 
codon to codon along the mRNA, amino acids are added 
one by one, translated into polypeptide sequences. At the 
end, the newly formed strand of amino acids (complete 
polypeptide) is released from the ribosome when a release 
factor binds to the stop codon. This is the termination phase 
of translation. 

 

 
Figure 5: Process of protein synthesis 
 
The functional sites in DNA sequences include 

transcription start site (TSS), translation initiation site 
(TIS), coding region, splice site, polyadenylation 
(cleavage) site and so on that are associated with the 
primary structure of genes. Recognition of these biological 
functional sites in a genomic sequence is an important 
bioinformatics application. We proposes a 3-step work flow 
as follows. In the first step, candidate features are generated 
using k-gram nucleotide acid or amino acid patterns and 
then sequence data are transformed with respect to the 
newly generated feature space. In the second step, a small 
number of good features are selected by a certain 
algorithm. In the third step, a classification model is built to 
recognize the functional site. 

We generate the new feature space using k-gram 
(k=1, 2, 3…..) nucleotide or amino acid patterns. A k-gram 
is simply a pattern of k consecutive letters, which can be 
amino acid symbols or nucleic symbols. We uses each k-
gram nucleotide or amino acid pattern as a new feature. For 
example, nucleotide acid pattern “TCG” is a 3-gram pattern 
while amino acid pattern “AR” is a 2-gram pattern 
constituted by an alanine followed by an arginine. We aim 
is to recognize functional site in a sequence by analyzing k-
gram patterns around it. Generally, upstream and down-
stream k-gram patterns of a candidate functional site (for 
example, every ATG is a candidate of translation initiation 
site) are treated as different features. Therefore, if we use 
nucleotide patterns, for each k, there are 2×4k possible 
combinations of  k-gram patterns; if we use amino acid 
patterns, since there are 20 standard amino acids plus 1 stop 
codon symbol, there are 2×21k possible k-gram patterns for 
each k. If the position of each k-gram pattern in the 
sequence fragment is also considered, then the number of 
features will increase dramatically. We call these features 
as position-specific k-gram patterns. Besides, k-gram can 
also be restricted those in-frame ones. 

The transformation is constructed as follows. 
Given a DNA nucleotide sequence, a sequence window is 

set aside for each candidate functional site with it in the 
center and certain bases up-stream (named as up-stream 
window size) and certain bases down-stream (named as 
down-stream window size). If a candidate functional site 
does not have enough up-stream or down-stream context, 
we pad the missing context with the appropriate number of 
don’t-care (“?”) symbols. 

 If features are made from amino acid patterns, we 
will code every triplet nucleotides, at both up-stream and 
down-stream of the centered candidate functional site in a 
sequence window, into an amino acid using the standard 
codon table. A triplet that corresponds to a stop codon is 
translated into a special “stop” symbol. Thus, every 
nucleotide sequence window is coded into another 
sequence consisting of amino acid symbols and “stop” 
symbol. Then the nucleotide or amino acid sequences are 
converted into frequency sequence data under the 
description of our new features. Later, the classification 
model will be applied to the frequency sequence data, 
rather than the original cDNA sequence data or the 
intermediate amino acid sequence data. 

In most cases, the number of candidate features in 
the feature space is relatively big. It is reasonable to expect 
that some of the generated features would be irrelevant to 
our prediction problem while others are indeed good 
signals to identify the functional site. Thus, in the second 
step, feature selection is applied to the feature space to find 
those signals most likely to help in distinguishing the true 
functional site from a large number of candidates. Besides, 
feature selection also greatly speeds up the classification 
and prediction process, especially when the number of 
samples is large. As used in gene expression data analysis 
(with name “all-entropy”), we choose all the features 
whose value range can be partitioned into intervals by 
Fayyad’s discretization algorithm. To achieve the ultimate 
goal of predicting the true functional site, we next step is to 
integrate the selected features by a classification algorithm. 
At this step, in the following two applications, we will 
focus on the results achieved by support vector machines 
(SVM) (with linear or quadratic polynomial kernel 
function). 

 
7. CONCLUSION 

We successfully make use of data mining 
technologies to solve some problems arising from 
biological and clinical data. We have articulated explicitly 
the 3-step frame work of feature generation, feature 
selection and feature integration with learning algorithms 
and demonstrated its effectiveness when dealing with 
phenotype classification and patient survival prediction 
from gene expression data, and functional sites recognition 
in DNA sequences. From large amount of experiments 
conducted on some high-dimensional gene expression data 
sets, we clearly observe the improvements on performances 
of all the classification algorithms under the proposed 
feature selection scenarios. Among these gene 
identification methods, we claim GFA algorithm is an 
effective approach. In the aspect of classification 
algorithms, no single algorithm is absolutely superior to all 
others, though SVM achieves fairly good results in most of 
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tests. Compared with SVM, decision tree methods can 
provide simple, comprehensive rules and are not very 
sensitive to feature selections. Among the decision tree 
methods, the newly implemented CS4 achieves good 
prediction performance and provides many interesting 
rules. 

Feature generation is important for some kinds of 
biological data. We illustrate this point by properly 
constructing new feature space for functional sites 
recognition in DNA sequences. Some of the signal patterns 
identified from the generated feature space is highly 
consistent with related literature or biological knowledge. 
The rest might be useful for biologists to conduct further 
analysis. 
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